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Abstract

The effect of non-linear image processing upon Modulation
Transfer Function (MTF) determination in discrete systems
is examined and demonstrated. The Volterra and Wiener
theories of non-linear systems,1 which may be considered a
generalized form of Linear Systems Theory (LST), are
introduced.

The potential of the Wiener theory to aid analysis of
discrete imaging devices that contain non-linear processing
is explored using a simple computer simulation. It is shown
that the majority of the linear component of an MTF may
be computed and thus provides a basis for the analysis of
systems. Error in the results and expected practical
implementational difficulties are discussed.

Problems Associated with Non-Linear Systems

The analysis of imaging systems using LST requires that the
system under scrutiny should be linear, spatially invariant
and homogeneous.3 Interesting problems associated MTF
measurement occur when the system is non-linear and a
number of common examples exist. Transformation of
output units into effective exposure units is used to correct
for the effects of large area tone reproduction in
photographic systems.4 Development processes have been
detailed and modelled using the chemical spread function.4

Further, mathematical derivations commonly assume low
contrast test signals where non-linearities are likely to exist.4

The behaviour of digital systems has increased interest
in the effect of non-linearities. The nature of digital systems
allows non-linear signal processing to be easily included.
An example is gradient based sharpening.5 The strength of
sharpening applied is proportional to the gradient of the
edge detected. This avoids problems associated with
amplifying noise.5 Presently, artificial intelligence is
increasingly being used to enhance the subjective appeal of
imaging results. The current trend is an increasing move
from passive to active camera agents.

Non-linearities in any imaging system render it scene
dependent.6 MTF measurement therefore depends on the
test target and method of analysis used. Figure 1 shows the

effect of varying edge target contrast upon a simulated
system with gradient based edge sharpening. The system
has linear tone reproduction and a Gaussian point spread
function (PSF).
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Figure 1. MTF of a system with non-linear sharpening. Each
curve represents a test edge of differing magnitude.

A substantial problem is which response may be
considered correct. All responses of the system are genuine
and thus no one may be selected as more or less significant
than any other. The result does not aid analysis or further
design of system components.

A Simplified Approach to Non-Linear Analysis

The approach to date for imaging system analysis has been
to minimize system non-linearities by manipulation of
exposure and, for photographic systems, development
conditions.4 It may be argued that this is equivalent to
measuring a linear component of the system MTF. Design,
based on this stable component, is facilitated. The non-
linear behaviour of the system may then be assessed as
required.4

Extraction of the linear component of system MTF may
be simplified by assuming that any non-linearity is
proportional to the optical contrast of the scene. The
assumption is justified if the typical behaviour of
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photographic systems4 and filters applied to digital systems
are considered.5 As the contrast of a test signal is reduced,
the effect of any non-linearities will diminish.4 Extending
this, it may be imagined that if the contrast of the signal was
reduced to zero, non-linearities would not be invoked. Thus,
the idea of a contrast-less edge is introduced that would
enable measurement of the linear component of MTF
directly.

The above is nonsense as it is not physically possible to
create a contrast-less edge. The concept, however, may be
used to develop a technique to extract the linear component.
System MTF may be determined a number of times with
edges of differing contrast for a non-linear system as in
Figure 1. Rearranging the information in the figure, it is
possible to examine the effect of the non-linearity with
respect to the magnitude of edge contrast, Figure 2. The
curves represent the change in single spatial frequencies as
edge contrast increases.
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Figure 2. MTF against edge contrast for the data in Figure 1.

For each spatial frequency, the variation in modulation
transfer can be seen to be a smooth transition and not
random in nature. The exact shape of each curve will
depend upon the particular non-linearity present and spatial
frequency in question.

The point on the graph at which contrast is zero
represents measurement with the contrast-less edge.
Assuming that the curves continue to change smoothly, it is
proposed that interpolation of the results measured with
respect to contrast will yield values at this point and thus the
linear component of the system MTF. The success of this
approach will be affected by the severity of the non-
linearity, noise and the type of regression used.

To test the approach, a number of systems were
simulated. One dimensional edges of various contrast were
created digitally using Microsoft Excel. The edges were
convoluted with a Gaussian filter, representing a linear
component of the simulated imaging system. For each point
of the discrete input, ns , the output, nr , was given by:

11 25.05.025.0 +− ++= nnnn sssr (1)

The input signal was designed to extend infinitely for
the purposes of calculation by replicating the first and last

points. Using each edge the MTF was evaluated using a
standard approach.4 It was found that edge contrast had no
significant effect upon the determined MTF as all results
were equivalent.

A linear sharpening filter, a scaled Laplacian,5 was
additionally applied to each edge. The sharpening filter may
be represented by:

11 6.020.26.0 +− −+−= nnnn sssr (2)

Once the MTF is evaluated, it was again found that the
measured response was consistent with respect to edge
contrast. A sample curve is shown in Figure 3. A conceptual
problem sometimes occurs when MTF curves rise above
unity. These points merely represent amplification of the
original signal and should not be misinterpreted as the result
of a non-linear process. As such these filters do not create a
problem for system analysis.
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Figure 3. MTF of a system with a linear sharpening filter.

A non-linear sharpening filter may be constructed by
scaling the previous filter, with the magnitude of the
gradient of the input signal:

( )[ ]1111 6.020.26.0
50

1
+−−+ −+−×−+= nnnnnnn ssssssr (3)

The filter is designed such that there is no sharpening
for uniform signals. As edge contrast increases the strength
of sharpening applied rises. The constant of 1/50 scales the
increase in sharpening. The system MTF may be thought of
as comprising of the linear Gaussian component in
combination with the non-linear response of the sharpening.

Variation may be seen to exist in the MTF with respect
to magnitude of edge contrast used for the test signal,
Figure 4. As previously shown, the information may be
rearranged with respect to target contrast, Figure 5. The
curves may then be interpolated in an attempt to yield the
linear component of the MTF, Figure 6.

The Volterra and Wiener Theories

The Volterra and Wiener theories of non-linear systems
afford a more sophisticated description of behaviour. An
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extensive description of the theories is given by Schetzen.1

An introduction to the theories is summarized from the
work of Burns.2
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Figure 4. MTF with respect to edge contrast for a system with
non-linear sharpening.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150
Edge Contrast (pixel values)

M
od

ul
at

io
n

T
ra

ns
fe

r
Fa

ct
or

0 0.0625
0.125 0.1875
0.25 0.3125
0.375 0.4375
0.5 (cycles per pixel)

Figure 5. The result of Figure 4 rearranged with respect to test
edge contrast.
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Figure 6. The result of applying regression to the curves in Figure
5 in order to estimate the ‘linear’ component of the MTF.

Volterra Series
The Volterra description of non-linear system

behaviour is a generalized functional series.2 The terms of
the series are n-dimensional convolution integrals based on

n-dimensional Volterra kernels.1,2 For a one-dimensional
stationary system,
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where r(x) is output, s(x) input, hn the set of Volterra kernels
and τn offset variables.2

The Volterra functionals rely being able to describe
system non-linearity as a power or polynomial series.2

Increased system non-linearity is modelled by selecting
significant terms of the series until r(x) describes behaviour
to the desired degree of accuracy.2 The approach is
analogous to that of the Fourier series describing a signal.
As a signal increases in complexity greater numbers of
terms are required to adequately describe it.2

The first term of the series represents bias in the DC
component of the modelled system that is not dependent on
the input signal. The second term of the series is similar to a
standard convolution integral for a linear system.2 The line
spread function(LSF) of the imaging system being
represented by h1. The first order term of the Volterra series
therefore represents the linear component of the system.
Terms beyond this represent the non-linear behaviour of the
system. The particular type of non-linearity will define
which terms of the series are used to describe the function.

In the same manner that a linear imaging system may
be specified by either its LSF or OTF, a non-linear system
may be specified by its set of Volterra kernels or their
transforms. The transform for kernel hn is given by:

( ) ( ) n
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where Hn represents the n-dimensional Fourier transform of
hn and ωn represents spatial frequency. It should be noted
that in the field of electronics the Fourier frequency
coefficient employed is commonly -1. This is the case for
specification of the Volterra and Wiener series in
References.1,2,7 The field of image science uses –2π and for
compatibility this has been employed here. The choice of
coefficient reflects a frequency scaling and will not affect
results if consistency is maintained.

Burns details two examples which give insight into the
behaviour of Volterra analysis.2 The linear part of the
system in Figure 7 has an LSF, a(x). Output of the linear
component may then be represented by:

δτττ )()()( −= ∫
∞

∞−
xsaxr (6)

The output after the non-linear component of the
system may be represented by:
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and alternatively:
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Using the above the Volterra kernels of g1(x) may be
found to be given by:

)()()(),,,( 2121 nnm aaah ττττττ …… = (9)

where hm=0 for m≠n. Burns then gives the corresponding
kernel transforms as:

)()()(),,,( 2121 nnm AAAH ωωωωωω …… = (10)

where A(ω ) is the Fourier transform of a(x).2 A pure non-
linearity of order n will only produce Volterra kernels of the
same order n.2

Linear
Process

a
s(x) r(x)

Non-
Linear
Process

r(x)n r(x)n=g1(x)

Figure 7. A non-linear system comprising of linear and non-linear
components.

Linear
Process

a

Non-
Linear
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Linear
Process

b

s(x) r(x) r(x)n=g1(x) g2(x)

Figure 8. An LNL system comprising a non-linear component
‘sandwiched’ between linear parts.

The second non-linear system detailed by Burns is
commonly referred to as an LNL model,2 Figure 8. The
system consists of a non-linearity sandwiched by two linear
components.

The LSF of the second linear component is b(x). The
output after the second component, g2(x), may be expressed
as:

δττ∫
∞

∞−
−= )()()( 12 xgxbxg (11)

g2(x) is rewritten as a Volterra series in terms of g1(x) and is
solved to produce the Volterra kernels and their transforms.2

After a number of steps, it is found that:
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where B(ω) is the Fourier transform of b(x).2 Significantly,
the Volterra kernels are given by combinations of the linear
component kernels. The kernel transforms for the LNL
system are given by combinations of the linear component
transforms. The exact combination is determined by the
order of the non-linearity.

Wiener Series
The Volterra series demonstrates how a non-linear

system may be represented by combination of n-
dimensional Volterra convolution integrals and kernels.
Wiener developed the Volterra approach to consider non-
linear system response to a white noise signal.1,2 The Wiener
expansion is given by:
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where C is the spectral power of the input signal and kn the
set of Wiener kernels.2 The expression is summarized by
Burns as2:
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where Gn is the set of Wiener functionals.2 The Wiener
functionals are orthogonal and thus the output of a system
may be represented by:

[ ] [ ] [ ][ ]skGskGskGxr nn
n
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The benefit of this representation is that Gn operates
only with kernels of order n. Therefore, Burns explains,
evaluating additional terms of Gn does not change
previously determined terms.2 Thus, successive Wiener
kernels may be determined until a good approximation of
system behaviour is reached.2 Differing non-linearities will
produce terms in differing orders of the Wiener series. The
first order term of the Wiener series may be thought of
representing the linear component of the system. This may
be thought of as an alternative method to achieve the
separation of the linear component of the system from that
which is non-linear.
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Determination of Wiener Kernels

Schetzen presents a method for the determination of Wiener
kernels using auto-correlation.1 Burns provides a useful
interpretation of the above method.2 Estimation of Wiener
kernel transforms has been shown to require less
computation.1,2 For a white noise input, the results of an
extensive derivation show that the first three Wiener kernel
transforms of a non-linear system may be estimated as:1,2
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for ω1≠ω2, ω2≠-ω3 and ω1≠-ω3.The Fourier transforms of the
input and output of the system are denoted S(x) and R(x)
respectively. The use of the complex conjugate is indicated
by * and the ensemble average by ε. For spatial frequencies
that do not comply with the given conditions, Burns states
that an impulse response exists.2 These points do not
represent an accurate estimate of the kernel transforms and
are excluded from all results.

Experimental Simulation

Rationale has been presented for extracting the linear
component of system response from that which is non-
linear. The Wiener series provides this component,
manifested as the first order kernel and its transform.
Additionally, higher orders provide a description of the non-
linear behaviour of the system. Though implementation of
the Wiener series is more complex, problems associated
with the interpolation of curves plotted with respect to input
signal contrast are avoided.

First order Wiener kernel transforms were determined
for each of the systems detailed previously. One thousand
measurements of each were performed in order to reduce
error in the results. Data lengths were maintained at 64
points. Because of the use of the Fast Fourier Transform, 32
useful points are yielded in the results. Calculation of the
magnitude of error is presented below and shown as error
bars in the resultant curves.

Figure 9 shows a magnitude estimate of the first order
kernel transform for the original Gaussian convolution
filter. Figure 9 also illustrates the result for the Gaussian and
linear sharpening filter in combination.

Figure 10 shows a magnitude estimate of the first order
Wiener kernel of the Gaussian and the non-linear
sharpening filter in combination. The first order estimate
may be seen to be equivalent to that measured for the
Gaussian filter applied in isolation. This is as expected as
the non-linear sharpening filter was designed to have no
linear component of behaviour. The Wiener kernel estimate
has successfully separated the linear and non-linear
components of behaviour. It may be seen, that for an
equivalent number of determinations, the noise is slightly

higher in results containing a non-linear component. This
effect has also been reported by Burns.2
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Figure 9. Magnitude estimate of the first order Wiener kernel
transforms for the Gaussian filter and linear sharpening filter.
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Figure 10. First order magnitude estimate for the system with the
non-linear sharpening filter.
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Figure 11. First order magnitude estimate for the system with the
complex non-linear sharpening filter.

Figure 11 additionally illustrates that when a complex
non-linear sharpening filter is applied in addition to the
Gaussian, the Wiener Kernel estimate is still able to
successfully extract the linear component of behaviour. The
complex non-linear filter was of the form:
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Error in Results

Excluding the points where an impulse response exists,
Burns estimates the standard deviation in single kernel
transform measurements.2 He concludes from empirical
measurement, that the standard deviation is one, three and
nine times the kernel transform magnitude for the first,
second and third order Wiener kernels respectively[2].

Taking M measurements, the standard deviation of the
averaged result, σA , is reduced to:

M

S
A

σ
σ = (18)

where σs represents the standard deviation in a single
measurement. Error bars in the Figures represent ±2σA

which includes 95% of values at each point in the final
result.

Implementational Difficulties

The ability to extract linear component measures from non-
linear systems suggests that long standing issues regarding
tone reproduction may be mitigated. i.e. It now becomes
unnecessary to transfer output into linear input units before
computation. In order to successfully do this, however, all
components in an imaging chain need to be analysed using
Wieners’ method. Also, the ability to design optical
components using the Wiener transform results needs to be
understood. This is impractical if the system presented in
Figure 8 is considered. The non-linear component of this
system may be thought of as representing the effect of
gamma correction in a typical digital camera. The gamma
correction renders the camera entirely non-linear. Wiener
kernels of the same order as the power function are
generated during analysis. As a consequence, those
components traditionally thought of as linear in the MTF of
the acquisition device will be arbitrarily displaced into
higher orders. Transforming output values of the device

being measured into linear input units is, therefore, still of
value when performing Wiener analysis. Components that
are determined as linear when employing traditional MTF
analysis will remain so. In turn it is not necessary to apply
Wiener series analysis to all components of an imaging
chain as the MTF may be compared with the first order
Wiener kernel transform.

The derivation and results presented in this work are for
a one-dimensional signal. It may be seen that the nth Wiener
kernel involves an n dimensional convolution kernel.
Extending the analysis to describe two or three-dimensional
systems will require an increase in the order of the Wiener
kernels used.

The estimation of the Wiener kernels also requires
many measurements using white noise. The value of the test
signal at each point needs to be known and aligned precisely
with the output of the system. This may deter common
application.

Conclusion

Though mathematically complex, the Weiner description of
non-linear systems provides an automated method for
extracting linear components of frequency response. The
technique is particularly suited for analysis of the increasing
numbers of non-linear digital imaging systems available and
provides significant advantages over previous methods.
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